THE FIRST ACETYLENIC MONOTERPENE AND OTHER CONSTITUENTS FROM SENECIO CLEVELANDII*

FERDINAND BOHLMANN, CHRISTA ZDERO, ROBERT M. KING† and HAROLD ROBINSON†

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; †Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 20 January 1981)

Key Word Index—Senecio clevelandii; Compositae; monoterpenes; acetylenes; acetylenic monoterpene lactone; tetrahydroquinol ester.

Abstract—The aerial parts of Senecio clevelandii afforded three new monoterpene lactones, one of them being the first acetylenic monoterpene to be isolated, a C-14 acetylenic angelate, a tetrahydroquinol ester and several known compounds, among them the tricyclic precursor of the polycyclopentanoide sesquiterpenes.

INTRODUCTION

In continuation of our investigation of the large genus Senecio [1], we have studied the constituents of Senecio clevelandii Greene. In addition to several known compounds, 3 new monoterpene lactones, an acetylenic angelate and the tetrahydro derivative of a widespread quinol ester were isolated. No furanoeremophilanes, however, were detected.

RESULTS AND DISCUSSION

The aerial parts of S. clevelandii, collected in California, afforded caryophyllene, α - and γ -humulene, sitosterol, the quinol ester 1 [2] and the corresponding tetrahydro derivative 3, the structure of which followed from the ¹H NMR data (Table 1), especially when it was compared with those of 4 (obtained by hydrogenation of 2) [2]. The main constituent was the precursor of the tricyclic

Table 1. ¹H NMR spectral data of compounds 3 and 4 (CDCl₃, 400 MHz, TMS as internal standard)

	3	4
H-2a, 6a	2.78 ddd	2.79 ddd
H-2e, 6e	2.24 dddd	2.23 dddd
H-3e, 5e	2.11 dddd	2.10 dddd
H-3a, 5a	1.75 ddd	1.77 ddd
H-7	2.50 s	2.56 s
OR	3.74 s	4.20 q
		1.29 t
ОН	3.83 s	3.93 s

J (Hz): 2a,2e = 14; 2a,3a = 14; 2a,3e = 6; 2e,3a = 4.5; 2e,5e = 3e,6e = 2.5; 2e,3e = 2.5; 3a,3e = 13.

sesquiterpene hydrocarbons, the alcohol 5 [3]. Furthermore, the dienyne 6 was isolated. Its structure followed from the UV and the ¹H NMR data (Table 2). Spin decoupling allowed the assignment of all signals, those of H-5 and H-6, however, were overlapped as usual. The stereochemistry of the double bonds was deduced from the couplings, only the configuration of the 5,6-double bond was assigned from the missing out-of-plane vibration of a trans-double bond and by the splitting pattern in the ¹H NMR spectrum, which was identical with that of similar authentic compounds. Furthermore, although H-5 and H-6 gave a still complex signal after irradiation of H-4, a 10-Hz coupling was visible. The fragmentation pattern in the MS of 6 also supported the structure. As usual, no elimination of angelic acid was visible. Instead of this m/z218, formed by elimination of the corresponding ketene, was present. Also M - CH₂CHO and -CH₂CH₂CHO fragments were detected, as was the ion C_4H_7O (m/z 71). Chemical ionization led to formation of m/z 210 as the base peak, obviously formed from M + 1 by loss of angelic acid leading to a stable allylic ion. The polar fractions afforded three lactones, the monoterpenes 7-9. While 7 and 8 could not be separated, 9, the first acetylenic monoterpene to be

Table 2. ¹H NMR spectral data of compound 6 (CDCl₃, 400 MHz, TMS as internal standard)

H-1	9.79 t	H-11	6.51 dd
H-2	2.46 dt	H-12	6.30 dd (br)
H-3	1.72 tt	H-13	5.83 dt
H-4	2.12 dt	H-14	$4.18 \ d \ (br)$
H-5 H-6	5 A6	OAng	6.07 <i>qq</i>
H-6 ∫	5.46 m	_	1.98 dq
H-7	$3.06 \ d \ (br)$		1.90 dq
H-10	5.60 dt (br)		

J (Hz): 1,2 = 1.5; 2,3 = 7.5; 3,4 = 7; 4,5 = 7; 6,7 = 6; 7,10 = 2; 10,11 = 15; 11,12 = 11; 12,13 = 15.5; 13,14 = 6; 3',4' = 7; 3'.5' = 4',5' = 1.5.

^{*}Part 367 in the series "Naturally Occurring Terpene Derivatives". For Part 366 see Bohlmann, F., Borthakur, A., King, R. M. and Robinson, H. (1981) *Phytochemistry* 20 (in press).

isolated, was obtained crystalline. Again the structures followed from the spectroscopic data. The 1H NMR data (Table 3) clearly indicated the presence of unsaturated butyrolactones, while the stereochemistry of the 4,5-double bond was deduced from the couplings in the spectrum of 7 and 8. The presence of an acetylenic bond in 9 followed from the characteristic IR band at 2200 cm $^{-1}$. The MS of 8 and 9 were characteristically different. Thus whilst 8, after loss of methyl, showed elimination of CO_2 (m/z 105), 9, most probably, was directly transformed to 10 by loss of CH_2OCO . 9 we have named cleviolide.

The roots also gave caryophllene, γ -humulene and the alcohol 5.

The compounds isolated from S. clevelandii may be an indication that this species also belongs to the Eusenecioid group [1], as from this group so far no furanoeremophilanes, but 1, 2 and small amounts of acetylenic compounds have been isolated. The cooccurrence of 8 and 9 as well as an usual acetylenic compound is of biogenetic interest, as this may support the assumption that the triple bond is formed by dehydrogenation of a cis-double bond [4].

Table 3. ¹H NMR spectral data of compounds 7-9 (400 MHz, TMS as internal standard)

	7 (C ₆ D ₆ / CDCl ₃)	8 (C ₆ D ₆ / CDCl ₃)	8 (CDCl ₃)	9 (CDCl ₃)		
H-2	5.53 s (br)	5.70 s (br)	5.87 s (br)	6.10 t		
H-4	$5.83 \ d \ (br)$	$5.46 \ d \ (br)$	$5.87 \ d \ (br)$	_		
H-5	6.27 dd	6.28 dd	6.58 dd	_		
H-6	5.70 d (br)	5.74 d (br)	$5.98 \ d \ (br)$	$5.99 \ s \ (br)$		
H-8	$1.64 \ s \ (br)$	$1.60 \ s \ (br)$	$1.92 \ s \ (br)$	1.96 s (br)		
H-9	$1.54 \ s \ (br)$	$1.52 \ s \ (br)$	$1.87 \ s \ (br)$	$1.91 \ s \ (br)$		
H-10	4.29 d (br)	4.36 d	5.01 d	4.80 d		

J (Hz): 2,10 = 1.5; 4,5 = 15 (compound 8: 11.5); 5,6 = 11 (compound 8: 11.5).

EXPERIMENTAL.

The air-dried plant material (voucher RMK 8422) was extracted with Et₂O-petrol (1:2) and the resulting extracts were first separated by CC (Si gel) and further by repeated TLC (Si gel). Known compounds were identified by comparison of their IR and 1H NMR spectra with those of authentic material. The aerial parts (500 g) afforded 50 mg caryophyllene, 5 mg α - and 5 mg γ -humulene, 3 mg sitosterol, 10 mg 1, 2 mg 3 (Et₂O-petrol, 1:3), 50 mg 5, 5 mg 6 (Et₂O-petrol, 1:1), 1 mg 7 and 3 mg 8 (Et₂O-petrol, 1:1, not sepd) and 3 mg 9 (Et₂O-petrol, 1:1), while the roots (130 g) gave 30 mg caryophyllene, 5 mg γ -humulene and 40 mg 5.

4-[Carbomethoxymethyl]-4-hydroxycyclohexanone (3). Colourless oil, IR $v_{max}^{CCL_4}$ cm⁻¹: 3510 (OH, hydrogen-bonded), 1720 (C=C, CO₂R); MS m/z (rel. int.): 186.089 (M⁺, 6) (C₉H₁₄O₄), 168 (M - H₂O, 100), 154 (M - MeOH, 24), 140 (168 - CO, 30), 129 (M - CH₂CH₂CHO, 30), 126 (154 - CO, 27), 112 (154 - ketene, 80), 98 (126 - CO, 95).

Preparation of 4. 30 mg 2 in 5 ml Et₂O were hydrogenated in the presence of 20 mg Pd/BaSO₄ (5%) to give 30 mg 4, colourless oil, IR $v_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 3510 (OH), 1720 (C=O, CO₂R); MS m/z (rel. int.): 200.105 (M⁺, 4), 182 (M - H₂O, 71), 154 (M - EtOH, 41), 143 (M - CH₂CH₂CHO, 63), 112 (154-ketene, 100).

14-Angeloyloxy-tetradeca-5c,10t,12t-trien-8-yn-1-al (6). Colourless oil, UV $\lambda_{\text{max}}^{\text{Er},0}$: 277, 266; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm $^{-1}$: 2200 (C=C), 1730 (C=CCO₂R, CHO), 1630, 990 [t, t-(CH=CH)₂-]; MS m/z (rel. int): 300.173 (M⁺, 2) (C₁₉H₂₄O₃), 257 (M - CH₂CHO, 1), 229 [M - (CH₂)₃CHO, 1], 218 [M - O=C(Me)=CH-CH=CO₂, 5], 178 (218 - CH₂O, 6), 83 (C₄H₇CO⁺, 100), 71 (C₄H₇O, 40), 55 (83 - CO, 71); CIMS (isobutane): 301 (M + 1, 4), 201 (M + 1 - AngOH, 100), 173 (201 - CO, 14).

4-Trans- and cis-4,5-dihydrocleviolide (7 and 8). Not sepd. Colourless oil, IR $\nu_{\text{max}}^{\text{CCl}}$ cm⁻¹: 1785, 1760 (y-lactone), 1630, 1620 (C=C); MS m/z (rel. int.): 164.083 (M⁺, 81) (C₁₀H₁₂O₂), 149 (M - Me, 8), 121 (149 - CO, 39), 105 (149 - CO₂, 100).

Cleviolide (9). Colourless crystals, mp 64° (petrol), UV $\lambda_{\text{max}}^{\text{Et}_2\text{O}}$ nm: 292; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 2200 (C=C), 1780, 1745 (y-

HO
$$CO_2R$$

HO $\frac{R}{CO_2R}$

OH

OH

I R = Me

3 R = Me

4 R = Et

Ang O
$$\stackrel{14}{\text{CH}}_{2}$$
 $\stackrel{13}{\text{CH}}_{2}$ $\stackrel{12}{\text{CH}}_{-}$ $\stackrel{10}{\text{CH}}_{-}$ $\stackrel{8}{\text{CH}}_{-}$ $\stackrel{7}{\text{CH}}_{-}$ $\stackrel{6}{\text{CH}}_{-}$ $\stackrel{6}{\text{CH}}_{-}$

lactone), 1600 (C=C); MS m/z (rel. int.): 162.068 (M⁺, 100) (C₁₀H₁₀O₂), 133 (M - CHO, 18), 104.060 (M - CH₂OCO, 68) (C₈H₈).

Acknowledgements—We thank Dr. D. Breedlove, California Academy of Science, San Francisco, for identification of the plant material and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- Bohlmann, F., Zdero, C., Berger, D., Suwita, A., Mahanta, P. K. and Jeffrey, C. (1979) Phytochemistry 18, 79.
- 2. Bohlmann, F. and Suwita, A. (1967) Chem. Ber. 109, 2021.
- Bohlmann, F., Zdero, C., Jakupovic, J., Robinson, H. and King, R. M. (1981) Phytochemistry 20, 2239.
- Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.

Phytochemistry, Vol. 20, No. 10, pp. 2427-2429, 1981. Printed in Great Britain.

0031-9422/81/102427-03 \$02.00/0 © 1981 Pergamon Press Ltd.

A GUAIANOLIDE FROM CENTAUREA BEHEN*

ABDOLHOSSEIN RUSTAIYAN, AKRAM NIKNEJAD, CHRISTA ZDERO† and FERDINAND BOHLMANN†

Department of Chemistry, National University of Iran, Teheran, Iran; † Institute for Organic Chemistry, Technical University of Berlin,
D-1000 Berlin 12, West Germany

(Received 2 December 1980)

Key Word Index—Centaurea behen; Compositae; sesquiterpene lactones; guaianolides.

Abstract—The aerial parts of Centaurea behen afforded in addition to known lactones a new derivative of solstitialin A.

Centaurea behen L., native in Iran, had not been investigated chemically. The aerial parts of this plant afforded several sesquiterpene lactones, the guaianolides cynaropicrin (1) [1], arguerin B (3) [2], desacylcynaropicrin (4) [3], grosshemin (6) [4] and minor amounts of the ketone 8, which is closely related to solstitialin A, the absolute configuration of which had been established [5]. 8 could only be isolated as its diacetate 9, which still was mixed with the acetate of 6. The latter, however, could be

separated from 9 after transformation to the corresponding pyrazoline derivative. The structures of 1, the corresponding diacetate 2, 3, 4 and 6 were elucidated by their 1H NMR data, which are presented in part in Table 1, as good spectra are not available in the literature. The structure of 8 also followed from the 1H NMR data of the corresponding diacetate 9 (Table 1). At 400 MHz in C_6D_6 all signals could be assigned by careful spin decoupling. Starting with the methyl doublet at δ 1.28 H-4

was assigned. H-4 was coupled with a signal at δ 2.12 which was assigned to H-5, as it also was coupled with the proton under the lactone oxygen. H-4 further showed a W-coupling with the three-fold doublet at δ 2.13, which obviously was the H-2 β -signal, as it was further coupled with a proton, which also was coupled with H-5. Finally, by further decoupling all signals could be assigned. The

^{*}Part 352 in the series "Naturally Occurring Terpene Derivatives". For Part 351 see Bohlmann, F., Zdero, C. and Gupta, R. K. (1981) Phytochemistry 20, 2024.